Lanthanide Chemistry

Expanding the LnZ₃/Alkali-Metal Reduction System to Organometallic and Heteroleptic Precursors: Formation of Dinitrogen Derivatives of Lanthanum**

William J. Evans,* David S. Lee, Charlie Lie, and Joseph W. Ziller

One of the recent advances in f-block-element reduction chemistry was the discovery that the simple combination of a trivalent lanthanide salt and potassium, that is, LnZ_3/K , could mimic the dinitrogen reduction reactivity of the highly reducing divalent ions Tm^{II} and Dy^{II} . Hence, the reduced dinitrogen complexes, $[\{(Me_3Si)_2N\}_2(thf)Ln\}_2(\mu-\eta^2:\eta^2-N_2)]$, originally made from divalent TmI_2 and DyI_2 in the presence of $KN(SiMe_3)_2^{[2]}$ [Eq. (1)], could be obtained from KC_8 and

the trivalent lanthanide amide salts $Ln^{III}[N(SiMe_3)_2]_3$ known for decades [Eq. (2)].^[3]

Not only was the Ln[N(SiMe_3)_2]_3/K reduction system shown in Equation (2) successful for Ln = Tm and Dy, which have accessible divalent states in soluble molecular complexes, $^{[4,5]}$ but it also provided $(\mu\text{-}\eta^2\text{:}\eta^2\text{-}N_2)^{2\text{-}}$ complexes of Ho, Y, and Lu. $^{[1]}$ Molecular divalent chemistry has not been reported for these elements to date. $^{[6]}$ Reduction of lanthanide salts by alkali metals dates back to Wöhler, $^{[7]}$ but has generally been used only to make elemental metals or the common divalent lanthanides, Eu II , Yb II , and Sm II . The other alkali-metal reductions of trivalent lanthanide ions involving dinitrogen and arene substrates have also been interpreted in terms of divalent states. $^{[9-14]}$

Herein we address the question of the generality of the LnZ₃/K/N₂ reduction system as a function of the monoanionic ligand, Z: specifically, is this reaction limited to some special feature of N(SiMe₃)₂ as the Z ligand? This ligand engages in

[*] Prof. W. J. Evans, D. S. Lee, C. Lie, Dr. J. W. Ziller Department of Chemistry University of California Irvine, California 92697-2025 (USA)

Fax: (+1) 949-824-2210 E-mail: wevans@uci.edu agostic interactions with lanthanides that could lead to special reactivity. $^{[15-20]}$

The $[(C_5Me_4H)_3Ln]$ complexes were chosen as desirable starting materials for LnZ_3/K chemistry since, like the $Ln[N(SiMe_3)_2]_3$ series, they are readily available, for the entire lanthanide series, from $LnCl_3$ and an alkali-metal salt. The C_5Me_4H ligand was chosen since a variety of substituted cyclopentadienyl lanthanide dinitrogen complexes were known for $Sm_*^{[23]}Tm_*^{[24]}$ and $Dv_*^{[25]}$

Lanthanum was one of the metals chosen for this study since no lanthanum dinitrogen complexes had yet been discovered and this would provide a diamagnetic complex of the largest lanthanide. Along with the diamagnetic Y and Lu complexes isolated from the reaction in Equation (2), [1] this would allow metal-size comparisons to be made with $[Ln_2(\mu-\eta^2:\eta^2-N_2)]$ complexes of both the largest and smallest diamagnetic ions in the lanthanide series.

[(C_5Me_4H)₃La] reacts immediately with KC₈ in THF under dinitrogen, [Eq. (3)], in a reaction similar to that in Equation (2).^[1] Since the KC₅Me₄H by-product has slight solubility in THF, the reaction solvent was removed in vacuo and the dinitrogen product extracted with toluene. The ¹H and ¹³C NMR spectra of the lanthanum product showed resonance signals typical for C_5Me_4H and THF ligands. Similar results were obtained with [(C_5Me_4H)₃Nd].

Crystal structure analysis of the Nd and La products showed that

the dinitrogen complexes [{($C_5Me_4H)_2(thf)Ln$ }_2(N_2)] (Ln = La~(1);~Nd~(2)) had formed. Each had the $Ln(\mu-\eta^2:\eta^2-N_2)$ structure observed for other lanthanide complexes, Figure 1. The overall structure was similar to that of the [{[(Me_3Si)_2N]_2(thf)Ln}_2(\mu-\eta^2:\eta^2-N_2)] complexes, [1] except that C_5Me_4H groups had replaced $N(SiMe_3)_2$ ligands. Considerable disorder occurred in these structures, particularly with the position of the ring carbon atom substituted with hydrogen in the C_5Me_4H ligands. Some refinements produced models which appeared to have a C_5Me_5 ring present. However, this disorder could be successfully modeled and the absence of C_5Me_5 rings was consistent with hydrolysis reactions which gave only $C_5Me_4H_2$ by GCMS.

To make a C_5Me_5 analogue for comparison with 1 and 2, reactions of $[(C_5Me_5)_3Ln]$ complexes^[26] with KC_8 could be considered. However, the $[(C_5Me_5)_3Ln]$ complexes react with the solvent, THF, to make $[(C_5Me_5)_2Ln\{O(CH_2)_4C_5Me_5]]$ compounds.^[26,27] To circumvent this problem, the precursor to $[(C_5Me_5)_3Ln]$, namely $[\{(C_5Me_5)_2Ln\}\{(\mu\text{-Ph})_2BPh_2\}]$, was examined as a starting material. This reaction was the first test of the use of a heteroleptic LnZ_2Z' precursor in the LnZ_3/K reduction system.

[{(C_5Me_5)₂La}{(μ -Ph)₂BPh₂}] reacts immediately with KC₈ in THF under dinitrogen to produce a red-orange complex, [{(C_5Me_5)₂(thf)La}₂(μ - η ²: η ²-N₂)] (3; Equation (4)). Isolation was accomplished as for the reaction in Equation (3) and the yield was again high, >90%.

The 1H NMR spectrum of [{(C₅Me₅)₂(thf)La}₂(N₂)] was distinct from that of [{(C₅Me₄H)₂(thf)La}₂(N₂)] and consistent with the presence of C₅Me₅ and THF ligands. In contrast to the C₅Me₄H complexes **1** and **2**, high quality X-ray data were obtained for the C₅Me₅ complex (Figure 1). The 1.233(5) Å

^[**] We thank the National Science Foundation for support of this research.

Zuschriften

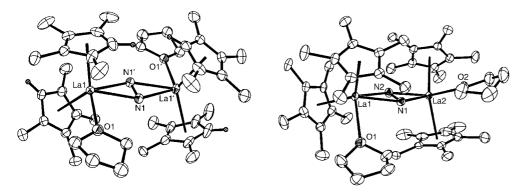


Figure 1. Ortep diagrams of 1 and 3 (thermal ellipsoids set at 50% probability).

Ln = La, Nd

nitrogen-nitrogen separation is consistent with the reduction of dinitrogen to $[N=N]^{2-}$.

¹⁵N NMR spectroscopy was informative with diamagnetic **1** and **3** displaying resonance signals at $\delta = 495$ and 569 ppm, respectively (with respect to MeNO₂ referenced at $\delta = 0$ ppm). These chemical shifts are similar to those observed for the [N=N]²⁻ ligands in the diamagnetic [{[(Me₃Si)₂N]₂(thf)Ln}₂(μ-η²:η²-N₂)] complexes, $\delta = 513$ (Ln = Y) and 557 (Ln = Lu) ppm.^[1]

In conclusion, these results provide not only the first lanthanum dinitrogen complexes, but also a high yield synthesis of $[Ln_2(\mu-\eta^2:\eta^2-N_2)]$ complexes. The yields of these reactions are the best yet obtained for $LnZ_3/KC_8/N_2$ reductions. For example, yields in the $Ln[N(SiMe_3)_2]_3/KC_8/N_2$ reactions [Eq. (2)], do not exceed 50%, a factor that has hindered the development of their chemistry. The low yields of the $[\{[(Me_3Si)_2N]_2(thf)Ln\}_2(\mu-\eta^2:\eta^2-N_2)]$ syntheses indicate that additional reaction chemistry is occurring in these systems. We suspect that this complicating chemistry arises from interactions of the soluble by-product of Equation (2), $KN(SiMe_3)_2$, with both the starting material and perhaps the initially formed dinitrogen reduction product. In the reactions in Equations (3) and (4), this problem is avoided, since neither KC_5Me_4H nor $KBPh_4$ are very soluble in THF. Hence

in the design of future applications of the LnZ_3/KC_8 reduction reaction, formation of an insoluble KZ byproduct may be useful in obtaining high yields.

More generally, these results show that the LnZ₃/K dinitrogen reduction system is successful not only with Ln[N(SiMe₃)₂]₃ precursors, but also with organometallic [(C₅Me₄H)₃Ln] complexes and with heteroleptic $[(C_5Me_5)_2La(thf)_2]$ [BPh₄] precursors. These reactions demonstrate that dinitrogen can be reduced to form lanthanide $[N=N]^{2-}$ complexes with a variety of ligands in coordinating solvents such as THF and that high-yield routes to diamagnetic compounds are available. The synthetic utility of this LnZ₃/K/substrate reaction should be extensive.

Experimental Section

1: In a nitrogen filled glovebox, a pale yellow solution of $[(C_5Me_4H)_3La]$ (0.113 g, 0.22 mmol) in THF (10 mL) was added to a vial containing KC₈ (0.046 g, 0.34 mmol) and a stir bar. The mixture immediately became dark and was allowed to stir for 2 h. The mixture was centrifuged to remove black and white insoluble material (consistent with the formation of graphite and KC₅Me₄H) and evaporation of the supernatant yielded a light yellow powder. Extraction

with toluene (10 mL) and removal of solvent gave a light yellow powder (0.075 g, 72 %). A concentrated toluene sample of 1 at -35 °C produced pale yellow crystals over 2–3 days. ¹H NMR (500 MHz, C_6D_6): $\delta = 1.55$ (s, 2 H, THF), 1.98 (s, 6 H, Me), 2.22 (s, 6 H, Me), 4.24 (s, 2 H, THF), 5.55 ppm (s, 1 H, H); ¹³C NMR (125.8 MHz, C_6D_6): $\delta = 12.0$ (C_5Me_4H), 13.3 (C_5Me_4H), 26.0 (THF), 71.8 (THF), 112.7 (C_5Me_4H), 117.5 (C_5Me_4H), 118.6 ppm (C_5Me_4H); ¹⁵N{¹H} NMR (50.7 MHz, C_6D_6) referenced to MeNO₂ at 0 ppm: $\delta = 495.0$ ppm. IR (thin film from THF): $\tilde{\nu} = 2961$ s, 2922 s, 2856 s, 2721 w, 1444 m, 1378 w, 1328 w, 1262 s, 1069 s, 1023 s, 872 m, 799 s, 756 s, 699 w cm⁻¹; elemental analysis (%) calcd for $C_{44}H_{68}N_2O_2La_2$: C 56.53, H 7.33, N 3.00, La 29.72; found: C 57.35, H 7.26, N 3.01, La 29.10. M.p. 120 °C (decomp).

2: Complex **2** was prepared similarly to **1** from $[(C_5\text{Me}_4\text{H})_3\text{Nd}]$ (0.057 g, 0.112 mmol) and KC₈ (0.0228 g, 0.168 mmol) to give a green powder (0.050 g, 94%). ¹H NMR (500 MHz, C_6D_6): $\delta = -0.33$, 1.78, 4.74 ppm; elemental analysis (%) calcd for $C_{44}H_{68}N_2O_2\text{Nd}_2$: C 55.89, H 7.25, N 2.96, Nd 30.51; found: C 55.80, H 7.13, N 3.05, Nd 31.15.

3: An orange powder (0.119 g, 93 %) was obtained similarly as for 1 and 2 from pale yellow [($C_5\text{Me}_5$)₂La(thf)₂][BPh₄] (0.225 g, 0.26 mmol). ¹H NMR (500 MHz, C_6D_6): δ = 2.07 (s, 15 H, Me), 1.47 (s, 1 H, THF), 3.92 ppm (s, 1 H, THF); ¹³C NMR (125.8 MHz, C_6D_6): δ = 12.2 (C_5Me_5), 25.8 (THF), 70.8(THF), 117.8 ppm ($C_5\text{Me}_5$); ¹⁵N[¹H] NMR (50.7 MHz, C_6D_6) referenced to MeNO₂ at 0 ppm: δ = 569.1 ppm. IR (thin film from THF): \tilde{v} = 2961 s, 2910 s, 2856 s, 2721 s, 1567 w, 1444 m, 1378 w, 1262 s, 1069 s, 1027 s, 872 m, 799 s, 683 w, 663 w cm⁻¹; elemental analysis (%) calcd for $C_{48}H_{76}N_2O_2La_2$: La 28.04; found: La 28.2. M.p. 120 °C (decomp).

Compound 1 crystallizes in the space group C2/c with a =15.305(3), b = 14.221(2), c = 25.794(4) Å, $\alpha = 90$, $\beta = 103.959(3)$, $\chi =$ 90°, $V = 5448.4(15) \text{ Å}^3$, Z = 4, $\rho_{\text{calcd}} = 1.364 \text{ Mg m}^{-3}$, R1 = 0.0271 [I > $2\sigma(I)$], wR2 = 0.0709, GOF = 1.043. Compound 2 crystallizes in the space group C2/c with a = 15.286(3), b = 14.085(3), c = 25.744(5) Å, $\alpha = 90$, $\beta = 104.266(3)$, $\chi = 90^{\circ}$, $V = 5371.6(19) \text{ Å}^3$, Z = 4, $\rho_{\text{calcd}} =$ 1.397 Mg m⁻³, R1 = 0.0279 [$I > 2\sigma(I)$], wR2 = 0.0741, GOF = 1.174. Compound 3 crystallizes in the space group $P2_1/c$ with a = 11.086(2), $b = 14.627(3), c = 32.882(7) \text{ Å}, \alpha = 90, \beta = 95.740(4), \chi = 90^{\circ}, V = 90^{\circ}$ 5305.2(18) Å³, Z = 4, $\rho_{\text{calcd}} = 1.356 \text{ Mg m}^{-3}$, $R1 = 0.0468 \text{ } [I > 2\sigma(I)]$, wR2 = 0.1040, GOF = 1.067. CCDC-242602 (1), CCDC-242600 (2), CCDC-242601 (3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

Received: July 3, 2004

Keywords: alkali metals \cdot cyclopentadienyl ligands \cdot lanthanides \cdot nitrogen fixation \cdot reduction

- [1] W. J. Evans, D. S. Lee, J. W. Ziller, J. Am. Chem. Soc. 2004, 126, 454.
- [2] W. J. Evans, G. Zucchi, J. W. Ziller, J. Am. Chem. Soc. 2003, 125, 10.
- [3] D. C. Bradley, J. S. Ghotra, F. A. Hart, J. Chem. Soc. Dalton Trans. 1973, 1021.
- [4] M. N. Bochkarev, I. L. Fedushkin, A. A. Fagin, T. W. Petrovskaya, J. W. Ziller, R. N. R. Broomhall-Dillard, W. J. Evans, Angew. Chem. 1997, 109, 123; Angew. Chem. Int. Ed. Engl. 1997, 36, 133.
- [5] W. J. Evans, N. T. Allen, J. W. Ziller, J. Am. Chem. Soc. 2000, 122, 11749.
- [6] G. Meyer, M. S. Wickleder, Handb. Phys. Chem. Rare Earths 2000, 28, 53.
- [7] F. Wohler, Poggendorfs. Ann. 1828, 12, 577.
- [8] G. Meyer, T. Schleid in *Synthesis of Lanthanide and Actinide Compounds* (Eds.: G. Meyer, L. R. Morss), Kluwer Academic, Dordrecht, 1991, p. 175.
- [9] E. Campazzi, E. Solari, C. Floriani, R. Scopelliti, *Chem. Commun.* 1998, 2603.
- [10] T. Dube, M. Ganesan, S. Conoci, S. Gambarotta, G. P. A. Yap, Organometallics 2000, 19, 3716.
- [11] M. F. Lappert, M. C. Cassani, F. Laschi, *Chem. Commun.* **1997**, 1563
- [12] M. F. Lappert, M. C. Cassani, Y. K. Gun'ko, P. B. Hitchcock, F. Laschi, Organometallics 1999, 18, 5539.
- [13] M. F. Lappert, M. C. Cassani, Y. K. Gun'ko, P. B. Hitchcock, F. Laschi, A. G. Hulkes, A. V. Khovstov, A. V. Protchenko, J. Organomet. Chem. 2002, 647, 71.
- [14] M. F. Lappert, Y. K. Gun'ko, P. B. Hitchcock, *Organometallics* 2000, 19, 2832.
- [15] T. D. Tilley, A. Zalkin, R. A. Andersen, D. H. Templeton, *Inorg. Chem.* 1981, 20, 551.
- [16] T. D. Tilley, R. A. Andersen, A. Zalkin, J. Am. Chem. Soc. 1982, 104, 3725.
- [17] T. D. Tilley, R. A. Andersen, A. Zalkin, *Inorg. Chem.* 1984, 23, 2271.
- [18] J. M. Boncella, R. A. Andersen, Organometallics 1985, 4, 205.
- [19] W. J. Evans, D. K. Drummond, H. Zhang, J. L. Atwood, *Inorg. Chem.* 1988, 27, 575.
- [20] J. R. Hende, P. B. Hitchcock, M. F. Lappert, J. Chem. Soc. Chem. Commun. 1994, 1413.
- [21] H. Schumann, M. Glanz, H. Hemling, F. E. Hahn, Z. Anorg. Allg. Chem. 1995, 621, 341.

- [22] W. J. Evans, D. S. Lee, M. A. Johnston, J. W. Ziller, unpublished results.
- [23] W. J. Evans, T. A. Ulibarri, J. W. Ziller, J. Am. Chem. Soc. 1988, 110, 6877.
- [24] W. J. Evans, N. T. Allen, J. W. Ziller, J. Am. Chem. Soc. 2001, 123, 7927.
- [25] W. J. Evans, N. T. Allen, J. W. Ziller, Angew. Chem. 2002, 114, 369; Angew. Chem. Int. Ed. 2002, 41, 359.
- [26] W. J. Evans, B. L. Davis, Chem. Rev. 2002, 102, 2119.
- [27] W. J. Evans, K. J. Forrestal, J. W. Ziller, J. Am. Chem. Soc. 1998, 120, 9273.
- [28] W. J. Evans, C. A. Seibel, J. W. Ziller, J. Am. Chem. Soc. 1998, 120, 6745.